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Abstract — The main objective of this paper is the investigation of the influence of thermomechanical
couplings and thermal softening effects on adiabatic shear band localization criteria for finite rate-
independent deformation of an elastic-plastic body. The constitutive equations for thermoelastic-
plastic J,-flow theory are formulated within a framework of the rate type covariance structure with
internal state variables. Two alternative descriptions are presented. Both constitutive structures
formulated are invariant with respect to diffeomorphisms and are materially isomorphic. Particular
attention is focused on the coupling phenomena generated by the internal heat resulting from internal
dissipation. An identification procedure has been developed which permits the determination of
the exact form of the evolution equation for the internal state variable vector. A set of coupled
evolution equations for the KirchhofT stress tensor and for temperature is investigated. The assump-
tion that the thermodynamic process considered is adiabatic permits the elimination of the rate of
temperature and gives the fundamental evolution cquation for the Kirchhof! stress tensor, This
important result allows the usc of the standard bifurcation method in the examination of the
adiabatic shear band localization criteria. For the particular elastic propertics of the material and
for some simplified case of the coupling effects the criteria for adiabatic shear band localization are
obtained in exact analytical form. Discussions of the influence of thermomechanical couplings,
thermal expansion, thermal plastic softening effects and the covartance terms on the localization
criteria are presented.

[. INTRODUCTION

In recent years there has been active research work in the field of the instability phenomena
of plastic flow processes. Particularly the localization of plastic deformation along a shear
band treated as a prelude to failure initiation has been a matter of great interest.

It has been shown that the onset of localization does depend critically on the assumed
constitutive law,

Rice (1976) in his fundamental work on the localization of plastic deformation wrote :
*“The present study shows that conditions for localization relate closely to subtle and
not well understood features of the constitutive description of plastic flow. .. While the
constitutive modelling of these features needs to be improved in relation to the detailed
mechanisms of deformation, so also is there need for a fuller assessment of the role of
imperfections or initial non-uniformities in material properties in promoting localization.
Indeed, the latter approach seems mandatory for rate-dependent plastic flow models and
these, as well as the range of thermomechanically coupled localization phenomena, would
scem to merit further study.™

In the mean time different constitutive features have been analysed and their influence
on the onset of localization have been investigated.

Particular attention has been focused on the following effects :

(i) yicld surface vertices (cf. Rudnicki and Rice, 1975; Needleman and Rice, 1978) ;

(i1) deviation from plastic “'normality™, i.e. deviation from an associated flow rule (cf.
Rudnicki and Rice, 1975 ; Needleman and Rice, 1978 ; Rice and Rudnicki, 1980 ; Duszek
and Perzyna, 1988a.b)

(i1i) the dilatational plastic flow due to nucleation and growth of microvoids (cf.
Rudnicki and Rice, 1975; Needleman and Rice, 1978 ; Duszek and Perzyna, 1988a,b) ;

(iv) strain-induced anisotropy modelled as the kinematic hardening rule (cf. Mear and
Hutchinson, 1985 Tvergaard, 1987 Duszek and Perzyna, 1988a.b);
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(v) influence of the covariance terms (co-rotational terms) (¢f. Rudnicki and Rice,
1975 Rice and Rudnicki. 1980 Lippmann, 1986).

The investigation of the influence of thermomechanicul coupling effects on the local-
ization phenomenon needs greater attention.

In many technological processes such as plastic shaping and formuing. low temperature
processes, dynamic fragmentation and high velocity machining thermal effects may have a
significant influence on the localization phenomenon.

Thermal effects may have greater influence on formation of shear bands in dynamic
loading processes when the heat that is produced during plastic deformation is given
insufficient time to be conducted away. Then the process considered 15 adiabatic and
localization occurs more readily.

Experimental results which confirmed such conjecture have been recently reported by
Hartley et «f. (1987). Marchand and Dutfy (1988) and Marchand er af. (1988).

The experimental investigations of Hartley et «f. (1987) were performed under dynamic
loading conditions for AISI 1018 cold rolled steel and AIST 1020 hot rolled steel. They
observed that the formation of shear bands for both steels is influenced greatly by thermal
effects. They showed that even a small increase of local temperature (about 50-80 C) for
1018 CRS steel enhances local deformation and local heating. and as a result, causes
mitiation of shear band formation. A similar result has been reported for a low alloy
structural steel (HY-100) by Marchand and Duffy (1988).

The muin objective of this paper is the investigation of the influence of thermo-
mechanical couplings and thermal softening effects on adiabatic shear band localization
criteria for fintte rate-independent deformation of an clastic -plastic body.

In Scction 2 a general internal state variable framework is presented. Particular atten-
tion 1s focused on the discussion of the spatial covariance constitutive structure.

In Scction 3 the constitutive equations for thermoclastic plastic J.-flow theory are
formulated within a framework of the rate type covariance structure with internal state
variables. Two alternative descriptions of thermomechanical couplings for J,-flow theory
are presented. In the first the Lie dertvative is used to define the objective rate of the
Kirchholl stress tensor, while mn the second the Zaremba Jaumann rate s utilized. Both
constitutive structures formulated are invariant with respect to diffeomorphisms and are
materially isomorphic.

Attention is focused on the coupling phenomena generated by the internal heat resulting
from internal dissipation. By applying the Legendre transformation and a carclul analysis
of the internal dissipation during the plastic flow process the identification procedure is
developed. This method of identification permits the determination of the exact form of the
evolution equation for the internal state variable vector which is responsible for the dis-
sipative nature of plastic flow phenomena.

Section 4 1s devoted to the investigation of the adiabatic process. A set of coupled
evolution equations for the Kirchhofl stress tensor and for temperature is investigated. A
method has been developed which allows us to obtain the fundamental rate criterion for
the KirchholT stress tensor. The matrix in this equation describes all thermomechanical
couplings introduced. This important result allows us to use the standard bifurcation
method in the examination of the adiabatic shear band localization criteria.

The matin contribution to thermomechanical couplings has been carcefully discussed.
Based on this analysis, the simplified evolution equation for the temperature is obtained.

The predictions, by applications of the [ocalization criterion, are given in Section 5.

A procedure has been developed which allows us to discuss two sepurate new effects
on the localization phenomenon along a shear band. One is thermomechanical coupling
when there is no spatial covariance effect and the other is the spatial covariance effect
for an assumed isothermal process. For both cases the criteria for adiabatic shear band
localization arc obtained in exact analytical form.

The influence of two important thermal effects, namely thermal expansion and thermal
plastic softening, on the criteria for localization of plastic deformation is investigated. The
similar influence of spatial covariance terms is also examined. A discussion of the results
obtained is presented in Section 6.
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2 INTERNAL STATE VARIABLE FRAMEWORK

2.1. Basic assumptions and definitions

Let us assume that a continuum body is an open bounded set # < R*, and let ¢ : £ —
& be a C' configuration of # in .. The tangent of ¢ is denoted F and is called the
deformation gradient of ¢.

Let {X*} and {x*} denote coordinate systems on A and ¥, respectively. Then we refer
to # < R’ as the reference configuration of a continuum body with particles X e .2 and to
& = @(A) as the current configuration with points xe.%. The matrix F(X, t) = ¢¢(X. 1)/ éX
with respect to the coordinate bases E ((X) and e,(x) is given by

o -
“UX.) = aﬁ(x.l). (D

where a mapping x = ¢(X. 1) represents a motion of a body 3.
In a neighbourhood of X, i.e. in .4 (X) for every Xe # we consider the local multi-
plicative decomposition
F=F-F", (2)
where (F°) "' is the deformation gradient that releases elastically the stress on the neigh-
bourhood ¢(.+ (X)) in the current configuration.
We define the total and elastic Finger deformation tensors
b=F-F', b =F-F, 3)
respectively, and the Eulerian strain tensors as follows

e=Hg-b"), ¢ =lg-b"), 4)

where g denotes the metric tensor in the current configuration.
By definition

e =e—¢ =3 '=b") (5)

we introduce the plastic Eulerian strain tensor.

In many fields of mechanics and particularly in continuum mechanics the Lie derivative
plays a very important role.t The Lic derivative of a spatial tensor ficld t with respect to
the velocity ficld v can be defined as

3
Lt=4¢, 5 (%0, (6)

where ¢* and ¢, denote the pull-back and push-forward operations, respectively.
We define the rates of deformation as follows
d=Le=!Lg
duh = %(ng)uh = é(gm‘l.rlh +grbl'r|u)' (7)
t For precise definition of the Lie derivative and its algebraic and dynamic interpretations please consult

Abraham et al. (1988). Applications of the Lic derivative to theoretical mechanics may be found in Abraham
and Marsden (1978) and to continuum mechanics in Marsden and Hughes (1983).
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where
art

Hlh = gt ®)

and 75, denotes the Christoffel symbol for the general coordinate system {x“}.
Similarly the rate of plastic deformation is given by
d" = Le =1L, ") 9
and
d=d+d". (10)

For any scalar function we have

L e e
Lf=1=%"*50

. (1

Let 7 denote the Kirchhoff stress tensor related to the Cauchy stress tensor o by

4 cl
= PRty (12)

where pp(X) and p(x,¢) denote the mass density in the reference and current configur-
ation, respectively, and the Jacobian J is the determinant of the lincar transformation
F(X.1) = (2/¢X)p(X. 1),

It s noteworthy that any possible objective rate of the stress tensor is a particular case
of the Lie derivative (cf. Marsden and Hughes, 1983).

The Lie derivative of the Kirchhofl stress tensor © (provided we have only contravariant
coordinate representation t in mind) gives

2

: (F-'-<ro¢)-F"'1-FT}o¢-'

J ;
- - — e
LT =0, or (¢*1) = {l‘ a
=t—-(d+w) 1—1 (d+w)", (13)
where - denotes the composition of mappings and w the spin tensor is defined as follows

Wyp = %(yuz""r'b_gnlvrlu)' (14)

In the coordinate system (13) reads

.
(&
(L) = Fy = (F e Fj 1) Fy

ot Ot , 0 ot
= e e — P 15
& T A v T A (13)

Equation (15) defines the Oldroyd rate of the KirchhofT stress tensor t (cf. Oldroyd, 1950).

The Zaremba-Jaumann stress rate or the co-rotated derivative of the Kirchhoff stress
tensor t is defined as

f=t—w't+1 w. (16)

Comparison of (16) with (13) gives the result
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Lt=%-d-t—1"d. 17

The result (17) will be used in the formulation of the alternative constitutive descriptions
of thermoelastic—plastic responses of solids.

2.2. Objective constitutive structure

To describe the dissipation phenomena during a thermoplastic flow process we have
to introduce the internal state vector ue V,, where V, is n-dimensional vector space.

The intrinsic state of a particle X e # at time ¢ is determined by a set of variables

s=(e,F,3:p), (18)

where e is the Eulerian strain tensor, F is the deformation gradient, J denotes absolute
temperature and g is the internal state vector.
[t is postulated that there exists the free energy function

¥ = y(e.F. 9;p), (19)
and the evolution equation for the internal state vector u is assumed in the form
Loy = m(u). (20)

In the theory which we intend to develop the free energy function (19) and the evolution
cquation (20) will play a fundamental role.

To investigate a notion of objectivity let us consider a superposed rigid body motion
given by a map (cf. Trucsdell and Noll, 1965)

x? =c()+Q(1) - x

or

% (X, 1) = c()+Q(1) - (X, 1), (21)

where ¢(r) is a vector function of time and Q(¢) is a time-dependent, proper orthogonal
transformation.
The deformation gradient for a new motion is given by

. (3 . _ .
F* =5 ¢ =Q0F. (22)

A spatial tensor field is said to transform objectively under superposed rigid body motions
if it transforms according to the standard rules of tensor analysis.

Similarly we can consider any superposed spatial diffeomorphism &:R’> —» R?. This
gives

$* =§-¢p: T =R} (23)
with deformation gradient
o5
. = — i
F ™ F, (24)

where T¢ = ¢§/0x is the associated relative deformation gradient.
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Generally. any spatial tensor field t is said to transform objectively under superposed
diffeomorphism § if it transforms according to the rule

tr =2t (25)

where &, is the push-forward operation.
Let t be a given time-dependent spatial tensor field on.%# and let t transform objectively.
Let v* be the velocity field of ¢*. Then we have (cf. Marsden and Hughes, 1983)

L.t*=¢&,.(LW. (26)
This means that objective tensors have objective Lie derivatives.

There are two levels of objectivity for the constitutive structures:

(1) Frame invariance. The constitutive structure should be invariant with respect to
superposed rigid body motions (cf. Truesdell and Noll, 1965).

(i) Spatial covariance. The constitutive structure should be invariant with respect to
ditfeomorphisms (cf. Marsden and Hughes, 1983).

Frame invariance leads to objectivity with respect to isometries, while the notion of
spatial covariance furnishes the constitutive structure with objectivity property with respect
to diffcomorphisms.

It 1s worthwhile considering two important particular cases (cf. Simo, 1988).

I. Let &:R' - R' be an isometry (rigid body motion), then the requirement of spatial
covariance reduces to the frame invariance conditions.
2. By choosing £:R" — R* as the inverse of actual motion, .. € = ¢ ', we have
$u =" (27)
Then
e’ = ¢*e = E,
F’ =F "“F=1,
=P u=M, (28)

where E is the Lagrangian strain tensor and M denotes the internal state vector in the
material description. Finally (19) reduces to the free energy function

Y =Y(E.0;M) (29)

for the material setting. This result has very important consequence for the constitutive
modelling.
in further considerations we shall take advantage of both notions of objectivity.

3. THERMOMECHANICAL COUPLINGS FOR J,-FLOW THEORY

3.1. Flow rule and isotropic hardening
Let us introduce the yield criterion in the following form:

f—r =0, (30)
where the yield function fis assumed as
S=Tg) =Jy = TG g 31)

and the work-hardening-softening function « is postulated in the form (cf. Nemes et af.,
1990)



Localization of plastic deformation in thermoplastic solids 1425

K = K, 9) = [k, + (kg —K,) e "2 (1 —wd), 32)

where k, is a material constant related to the initial yield stress, x is the saturation hardening
stress, A, = h,(9) is a temperature-dependent hardening function, ¢” denotes the equivalent
plastic deformation

& = J (a7 d7) "2 dr’ (33)
0

and

w = const. (34)

The function « in the form (32) describes the saturation of the hardening of the material
as the plastic deformation progresses.

Linear approximation of the function e " gives
& = K[ +h(3)e’ ) (1 —wd), (35)
where
Ky
() = <« - I)h,(.’)). (36)
Ko
The flow rule is postulated in the form
¢ = AP, 37)

where

1 af ( t )t
P= o 2= | (38)
2/7: % \a /i,

and the symbol | denotes the index lowering operator.
Fulfilment of the consistency condition f — & = 0 gives

! ,
A=<—,;(P:t+n9)>, 39)

where the symbol {(x)) defines the ramp function

x+|x]

)y =5,

(40)

and is used to express the loading/unioading criterion ; the isotropic hardening modulus
is determined by

1 & ‘) —K
He—t E’l — f'l_(%__—h—o)[x‘ +(K0—K|)C‘h'(m"](|—(l)g)e—h'(:"”‘ @1

2./37, % 37,
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and
1 ¢éx 1 w
o= — — = o+ _ ~h,(3)e? { . e Y a—h (e
5 1203 ?.V/J—:[M (ko—xy)e ]‘90[’\1‘*‘(’\0 K))e ]
da (3 ,
+2(Kg—Ky) (;;)e"(l—wg)e"'"“’“’}. (42)

( )

It is noteworthy that our consideration is valid for any material function x = K(¢”, 3).
Furthermore, we can also postulate the evolution equation for x, e.g.

K= h()(d7:d7) "2 4 hy(0)3 (44)
then
H=h()- l (45)
2/,
and
) (46)
2/,

3.2, Evolution equation for the internal state vector

It is reasonable to present here a brief discussion of the main features of a rate-
independent plastic model of a material. The first important property is connected with
permanent deformations. This is the result of different paths assumed for the loading and
unloading processes. The unloading process, starting from the achieved elastic-plastic state,
follows a path in the stress space different from that of the loading process.

The second feature of the plastic model is its time independence. So, the constitutive
equations as well as the evolution equations for an clastic~plastic material have to be
invariant under the time scale changes.

Both these features, namely the occurrence of permanent deformations and the time-
independent behaviour of a material, are characteristic of inviscid plastic models.

The internal state vector g is introduced to describe dissipation effects occurring during
the thermoplastic flow process. The evolution equation for the internal state vector u
postulated in the form (20) has to satisfy these two main properties of a plastic model.

To fulfil this requirement we have to assume

Ly= m(J)<}l~l(P:r’+n9)>. (47)

where the material function m(s) remains to be determined.

3.3. Thermodynamic restrictions
Consider balance principles as follows:

(i) Conservation of mass. Let us assume that ¢(X. 1) is 2 C' regular motion. A function
p(x, 1) is said to obey conservation of mass if

p+pdive=0 (48)
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or
p(x,. 0 J(X, ) = pre(X). (49)

(ii) Balance of momentum. Assume that conservation of mass and balance of momen-
tum hold. If there is no external body force field, then

pv =dive. (50)

(iii) Balance of moment of momentum. Let conservation of mass and balance of
momentum hold. Then balance of moment of momentum holds if and only if r is symmetric.

(iv) Balance of energy. Assume the following balance principles hold : conservation of
mass, balance of momentum, balance of moment of momentum and balance of energy. If
there is no external heat supply then

LY (51

Pret

p(U+ 97 +nd)+divq =

where 1 denotes the specific (per unit mass) entropy and q is the heat vector field.

(v) Entropy production inequality. Assume conservation of mass, balance of momen-
tum, moment of momentum, energy and the entropy production inequality hold. Then the
reduced dissipation inequality is satisfied :

1 . 1
———t:d—(n.’§+|//)—l—)—§q'grad920. (52)

Prer

Let us introduce the axiom of entropy production: for any regular motion of a body
# the constitutive functions are assumed to satisfy the reduced dissipation inequality (52).

Then the constitutive assumption (19) and the evolution equation for the internal state
vector u (47) together with the reduced dissipation inequality (52) lead to the results as
follows

N o

T=Pucr‘o'g' n= ~ 29

o 1
_ ———— ol * v /] ? . a-C
u L. p.’)q grad 3 2 0 (53a-¢)

We define the rate of internal dissipation by

g 0 o L b tins
= - é;-L,y = - b;'m(J)<ﬁ(P:r+nJ)>. (54)

Equation (54) expresses a very important feature of thermoplastic response of a material,
namely that the rate of internal dissipation occurs only during the loading process.

3.4. Rate type constitutive relation
Operating on the stress relation (53a) with the Lie derivative and keeping the history
constant (the internal state vector constant), we obtain

Lt=%-d -3 (55)
where
62 az
&= Pkcr%, z" lp (56)

= "Pkerm

denote the elastic moduli and the thermal stress coefficients, respectively.
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Let us generalize the relation (55) for an elastoplastic flow process. Then taking (10)
into account we can write

Lt=%(d—d")-2L"3. (57)

Notice that in view of eqns (13) and (16) the flow rule (43) can be written accordingly
in two equivalent forms:

d"=<%1[P:(L,t+d°t+t'd)+n3}>}’ (58)
or

r_ _l, .Y
d" = <H(P.z+n.§)>r’. (59)

Substituting (58) into (57) yields the evolution equation for the Kirchhoff stress tensor t in
the following form (cf. Perzyna, 1989, 1990):

Lt=%d—-x3, (60)
where
[ L gopp ]
) H i
L= 1= e _fz"_y_f/'-p(P-t+t-p) .
1 ¥ -P):
| (2P
[ L popp |
H™ o
= | e e || P P, (61a.b)
—fpr . .
RS2 P).PJ

Substituting the flow rule (59) and the relation (17) into eqn (57) gives the alternative
form of the rate type constitutive equation

T=2d—xd, (62)

where

=l e [ g (63)
I+ (27 P):P

and x is determined by eqn (61b).

It is noteworthy that the rate type formulations (60) and (62) are materially isomorphic
or equivalent, that is each of them describes the same material.

There is now an extensive technical literature dealing with an elastic-plastic model of
solids in which there is no distinction made between the matrix #“+gr+1tg and 2. In
other words for practical purposes in such a model the term g* t™ + ¢*/t™ compared to the
matrix (Z°)**is neglected.
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The simplified theory obtained in this way is objective only with respect to superposed
rigtd body motions. Such a theory does not meet the much stronger condition of spatial
covariance.

3.5. Thermomechanical couplings
Substituting ¢ into (51) and taking into account the results (53) gives

pon = —div q+ pIi. (64)

Operating on the entropy relation (53b) with the Lie derivative and substituting the
result together with the assumed Fourier constitutive law for the heat flux in the form

q= —kgrad 3, (65)

where & is the conductivity coefficient, into (64) we obtain the heat conduction equation as
follows:

p Ot 1 . i
- pdpx{ L (Pritad) ), (66)

pc,3 = div (k grad 3) + 9 e 30

) 0*
x = -(‘fﬁ -5 ”‘)-mm. (67)

du R
and ¢, denotes the specific heat and is determined by

0%y
¢, = —9 0‘;'/2’-. (68)
The main problem remaining to be solved is connected with the determination of the
constitutive function m(u). This function plays the crucial role in the description of the rate
ofinternal dissipation (54) as well as of the main contribution to thermomechanical coupling
phenomena [cf. eqns (66) and (67)].
To find the answer to this problem let us perform a Legendre transformation.t We
define the complementary free energy by

. I
(p:(p(z,F,:;;y).—.;-—r:c—.ﬁ(c.l«“.s;p). (69)

Refl
Differentiating (69) in t, we have

0@
€= Prer 30 (70)
Operating on the last result with the Lic derivative gives

4

oy
d=c'L.r+r9+pR¢;(3;%'L.y. (N

t For the application of a Legendre transformation to analysis of elastoplastic propertics of material, sce
Hill and Rice (1973).
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where

¢’ &g

=Prer s T =Pri3z-ag 72
c Pacrat_ r Prer 37737 (72)

define the material compliance tensors.
Identifying the last term in eqn (71) with the rate of plastic deformation yields the
identityt

&' 1 l
pkcfggi’;'m(a)<ﬁ(f’:f+n9)> = <E(P:f+n9)>P. (73)

so we get the result

l 62 - -1
m(s) = [ °1 (74)
Prer LOT Opt

The answer to the problem of determination of the material function m(.) can be found in
a different way, namely by using the stress relation (53) and operating on it directly with
the Lie derivative.

Making use of the definition (67) and taking advantage of the result (74) we get

1 (of %y 3¢ |
"“";7;[("“ 9696;«) [016;1] P 72)

Substituting the result (75) into the heat conduction equation (66) we obtain

. » ﬁzlﬁ e ]!
;)c/,.'J = div (k grad )+ ') e ~,— d+-{r:d”+ - 9 < d”, (76)
09 Pret 239 o {Jrdu

where the new notation

fr=—2° %. [ijl"' (77)

prec On L0t 0p

is introduced.
To determine { we have the identity

W_ 0-&{

CpRcf -

-1
= ] . (78)
de  pua Op [Otp

4. ADIABATIC PROCESS

4.1. Fundamental equation for the adiabatic process
The thermodynamic process is assumed to be adiabatic, i.e.

q=0. (79

This assumption is satisfied for the thermoplastic flow process before localization takes
place, then the distribution of plastic deformation as well as the rate of plastic deformation
is homogencous.

t Similar identification of the rate of plastic deformation was first peformed by Rice (1971): cf. also Hill
and Rice (1973).
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The term div (k grad 3) in the heat conduction equation (66) vanishes. Then to describe
thermomechanical constitutive properties of a material we have two coupled evolution
equations, namely for the Kirchhoff stress tensor (60) and for temperature

ot P
3=89— R,,es d+x<H(P:r+n3)>. (80)

Equation (80) can be written in the form

3H ct X
= e e P 81
pRcf(cpH_xn) ¢3 CpH"xﬂ ( )

Taking advantage of eqn (13) in (81) and substituting the result into eqn (60) gives

Lrt=1L1"d, (82)

where

-1
_ X {1, | S3H ot }}
L= [H— cH-17 xP] {.!’ : CH—n [chr 79 2xx(P 147 P) (83

The result (82) is of great importance to constitutive modelling of thermomechanical
coupling phenomena in adiabatic processes and to the investigation of the conditions for
the localization of plastic deformation,

It is noteworthy that the fundamental matrix L [cf. eqn (83)] in the evolution equation
(82) describes all the introduced thermomechanical coupling effects.

Procecding similarly but replacing the Lic derivative equation for the Kirchholf stress
tensor (60) by the Zaremba-Jaumann rate equation (62) we get

¥=1(-d, (84)
where
x S HY Ot}
= t+-————~—xp] '[.‘f——w—wmav-; . 85
[ cH—xn Prelc, H—ym) 63 (83)

[t is worthwhile pointing out once more that the evolution equation (84) is materially
isomorphic with (82).

4.2. Main contribution to thermomechanical coupling
Let us consider the heat conduction equation (76). For an adiabatic process this
equation takes the form

p ot , %y "
pe,d =92 P RS 363&! m}p -dr. (86)

The second term on the right-hand side represents the main contribution to the thermo-
mechanical coupling phenomena. It generates the internal heating caused by the rate of
internal dissipation during the adiabatic process considered.

The first and third terms represent the cross coupling effects, the first is caused by the
dependence of the stress tensor on temperature while the third is induced by the same
dependence of the generalized force conjugates to the internal state vector a.

8\s !7-11-F
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The cross coupling effects influence the evolution of temperature [cf. eqn (86)] through
the second order terms when compared with the internal dissipation term. Their con-
tribution to internal heating during the adiabatic process considered is small.

This suggests that these two terms can be neglected in some considerations like the
investigation of the conditions of the localization of plastic deformation along the shear
band.

So. it is reasonable to consider the evolution equation for temperature in the form

,()C,".Si = (1:d", (87)
where { is determined by (78).

Let us consider a set of two coupled evolution equations. for the stress tensor (60) and
for temperature (87). This set is reduced again to the fundamental equation of the form

Lrt=1-d (88)

where

;o [ A 2/

t
I+ XP] . {.‘Z' - e x[Prr 41 P]} (89)
f{p(',,-—Cn\/}z Hp(',.-—Cn\/J:

Let us consider now a similar set of two coupled evolution equations for the stress
tensor (62) and for temperature (87). This gives

Y=0-d (90)

where

=b

- j, t i
= [H NE xl’:| 3 91

Hpe,—Cn/J,

5. CONDITIONS FOR LOCALIZATION ALONG SHEAR BAND

5.1. Criteria for localization

It is noteworthy that the important result obtained for an adiabatic process in the form
of the evolution equation for the Kirchhoft stress tensor [ef. eqns (82), (84), (88) and
(90)] allows us to use the standard bifurcation method in examination of the shear band
localization condition in elastic-plastic solids when thermomechanical couplings are taken
into consideration.

This method leads to the criterion for a stationary discontinuity that can be predicted
in terms of the constitutive relations of the material under the condition of pre-localization.

The fundamental principles of this method were given by Hadamard (1903) for elastic
solids and extended to clastic-plastic solids by Thomas (1961), Hill (1962) and Mandel
(1966).

The theory of the localization of plastic deformation along shear band was developed
mainly by Rice (1973, 1976), Rudnicki and Rice (1975), Necdleman and Rice (1978), Rice
and Rudnicki (1980) and Lippmann (1986).

In the previous papers of the authors (Duszek and Perzyna, 1988a.b) the standard
bifurcation method was used to investigate the shear band localization conditions for finite
clastic—-plastic rate-independent deformations of damaged solids.

The main objective of this section is to investigate the influence of thermomechanical
coupling effects on shear band localization criteria.
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The procedure of analysis developed by Rice (1976), Rudnicki and Rice (1975) and
Rice and Rudnicki (1980) is adopted to investigate the localization conditions in an adiabatic
process.

5.1.1. The Lie derivative formulation. Let {X'} and {x'} denote Cartesian coordinate
systems on # and &, respectively. Consider a homogeneous solid body # subjected to a
thermodynamic process of elasto—plastic flow phenomena.

The initial-boundary value problem consists of finding ¢ and 3 as functions of x and
t such that the field equations:

pv+dive =0,
Lrt=92d-x

Lp= m(,;)<-lﬁ (P: r‘+n(i)>.

p Ot

pc,d = div (k grad 3)+ 9 Pt

1 .
d+px<ﬁ(P:t’+n9)>, (92a-d)

the boundary conditions:

tractions (t - n)' arc precribed on 04,

temperature 3 is prescribed on 0:4,
and initial conditions:
¢.v.pand 3 aregivenat =0,

are satisfied.
In many practical situations the problem considered can be treated as quasi-static and
adiabatic. Then based on the results of Section 4 the ticld equations (92) can be reduced to

dive =0,

Lt=101-d, (93a.b)

with prescribed tractions (r+n) on 0.4.

Let us assume that the boundary conditions are such that a body sustains a uniform
stress t° and uniform temperature 3°. The response to a homogeneous velocity gradient
ficld (@v/éx)" is the homogeneous stress rate £° which satisfies the quasi-static field equations
(93).

Conditions are sought for which the state of the solid body 4 allows the ficld cquations
to be satisfied for an alternate field

0v_ é’v"A(?v 94
ax - \ax) T8\ (94)

in which the jump A(Jv/dx) is a function only of distance across a planar band and vanishes
outside the band. If the velocity is to bc continuous at bifurcation, the compatibility
condition
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cv
A<:-> = kn 9%
cX

must be satisfied, where n denotes the unit normal to the plane of the band and the
magnitude of jump k is a function of distance across the band (n-x) only, and is zero
outside.

Equilibrium must also be satisfied at the inception of bifurcation. This is expressed in

rate form as
-~ ey o] St
¢ [do ( ct
el === o =ty — g = (). (96)
cx! ( it ) cx! ( . xt

Because bifurcation is from the homogeneous state t = t° the rate equilibrium condition
reduces at the instant considered to

("f” i (1({;\*
‘;’—,’r—f,—{—’,=0. (97)
[SAN CX

Equations (95) and (97) require that n-  has the same value inside and outside of the band,
i.e.

n‘At—(n-t)(k'n) = 0, (98)
where At = t—1¢".
Taking advantage of the rate type constitutive relation (93b), the homogencous ficld
outside the band has to satisfy

Lt =1°d" (99)

and inside the band the corresponding equation

Lr=1-d (100)

The compatibility condition (95) can be expressed in terms of d by
Ad = d—d° = {(kn+nk). (101)

Assuming that the constitutive response remains continuous at the inception of localization,
1c.

Al =L~L1"=0, (102)

then eqns (97)-(102) yield
L%+ 0,1 '™k, = 0. (103)

The last two terms in parentheses arise due to the difference between L,t and <.

The onset of the localization occurs at the first instant in the deformation history for
which a non-trivial solution of eqn (103) exists. Thus, the necessary condition for a localized
shear band to be formed is
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det[n,L"n +n,t'ns'*} = 0. (104)

For simplicity let us introduce rectangular Cartesian coordinates {x'} in such a way
that n is in the x.-direction. Then eqn (104) takes the following form:

det [L¥* +1735%] = 0. (105)

5.1.2. The Zaremba-Jaumann rate formulation. Replacing the rate constitutive equation
{93b) by (84) and proceeding as for the Lie derivative we get the necessary condition for
the localization along the shear band in the form

det [n,0™%n, + Y(nt'nd™* —n1'nd* —mnt*6" —1%)] = 0. (106)
Assuming for simplicity that n is in the x,-direction, we have
det [[3% 4 Je2307* — 1Y% —1¥*5% — )] = 0. (107

5.2. Simplifications

To make possible analytical investigation of criteria for localization we introduce some
simplifications.

(i) Assume that the Lie derivative L, is approximated by the material derivative ¥, 1.e.

v ) I )
L.t = 7 (ort X t)in the constitutive laws formulated.

(1) The evolution equation for temperature (92d) is replaced by (87). That means that
only the main contribution to thermomechanical coupling is taken into consideration (cf.
discussion in Scction 4.2).

(ii1) By analogy with the infinitesimal theory of elasticity we postulate

-1 Lo ! [ Y ik
(£ Yims = Ve (0:3‘);14'0.1‘);&)-*-(6‘[\'; - 66)% du+1/'9%, (108)

where G and K denote the shear and bulk moduli, respectively.
{iv) Assume that

_;!;»'gni: - UL (!09)

where 0 is the thermal expansion in the clastic range.

Let us first discuss superposition of (i) and (ii) into the constitutive laws. We observe
that for this case, eqns (88) and (90) arc equivalent and lead to the simplified constitutive
law (of course not objective)

=104, (110)

where

L=2+7 (1t
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and
! £ -PP
- H
Y — l__ l ,yv‘
I+ —(Z¥P):P
+ (£ P)
_ WA - c ST, _
7 =_[|+ "\—;——x:P:l BERAAS S N3 (112)
Hpc‘p~C7r\/.—/; Hpcp—Crr\/—J;

Superposing the simplifications (iii) and (iv) and neglecting terms of the order of
magnitude /J.. we have

- - 1 G . G
://:/Al = G(()A:()l/ +6k/5h)+ (K— ;;G)(su 61({__ 'y T,H.
H+G \/_,_: \/f
g 00 O E
Js (H+GYH+G-GID (H+G—(iﬂ)\/]; '
[ = G(3*%0" + 0% §") + (K~ 31G) 8" o
G* 2G°E
- . t'u ki __ )‘u Y l }i .
J(H+G-GIT) (H+G—Gn)\/./‘( o (o)
where new notations
L OR
RN Y8 _ 30K, ot
B pe, G a 2Gpe,’ - 2Gpe, (H4a.6)
are introduced.
The necessary condition for localization along shear band now takes the form
det [L¥*?] = 0. (115)

This condition gives

or

H=-G. (117

The solution H = — G is independent of the orientation of the plane within which the
shear band localization first takes place. On the other hand the solution (116) does depend
very much on this orientation.

To investigate the solution (116) let us assume n;; = 0, and require A to bc maximum
with respect to ny. i.c.

oF
é -0

— 118
an, (118)
After taking advantage of the relations
thy = af (T~ T + T,
that iy = A (l=ni)(ri—ti)’, (19

the condition (118) yields the result
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nz _ (l -V)(Tmu_ Tmm)+(l _zv)(Tmin _E)

. 120
: Tmax_Tmin ( )
where
T Ty T
Tmas=—' T= . Tmunz'—‘. (lZI)
JI: I VI
and
=2
V= B_K_'T.ﬁ_ (122
20K+G)

is Poisson’s ratio.
Since nf; = | —ni, we have

n, (VT+ Tm;u) +(l “'ZV)E)\ .
t =—=|{- =] . 123
= ( T+ ) + (1=20)3 (129
where f§ denotes the angle between the vector n and the 1, direction.
Making use of (120) in (116) we obtain
H, l+v 1=2v_V  (1=2v)°_,
= = e B O . 124
G 2 <T+l+v >+ P—v +h (29
For
1 =2v
= - ——Z= 12
T +v (125)
the critical hardening rate takes a4 maximum value
H, (1=-2v)° _, 5
(.-G—_)ml B —t Vz =+ (I‘-())

5.3. Spatial covariunce effects on localization (isothermal processes)

The main objective at this point is to investigate the influence of the spatial covariance
effects on localization criteria. To do this we remove the simplification (i), replace (ii) by
the stronger requircment

3 = const, (127)

i.c. the process considered is assumed to be isothermal, and takes advantage of (iit).
Under these conditions the rate equation (60) takes the form

Lt=2%-d (128)
where

(L) = G(6* 6" +5"6™) + (K~ 3G) 8 6/ +1/'6%

G* y G ,
—_—— gtk rif prkr s 9
(H+G).12r T (H+G)er ", (129)
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It is noteworthy that the last term in (129) represents the spatial covariant effects in
the constitutive matrix &. So, it would be convenient to write the matrix % as a sum

L =2P+€ (130)
where
P = G(6* 6" +8" 8"+ (K—3G) 87 oM +1/0% ~ —————(Hf;)jz i, (131)
cf. with eqn (113a), and
A TR hg,,. (132)

T (H+G)J,
The necessary condition for localization (104) now takes the form
det [, (2" + 4" yn, 4 n,1'mo™) = 0. (133)
This condition can be written as
det [n (L™ + 4] = 0, (134)
where the matrix
PR ALES T (135)

describes the influence of the spatial covariance cffects on the criterion for localization.
The condition (134) gives the value of the rate hardening modulus # in the form

H=H,+H,, (136)
where
G| t=2v s
o=j;[i‘(‘:v‘)fz:+fn"-/z] (137)

is the value of the rate hardening modulus computed by neglecting the influence of the
spatial covariance terms and the higher order terms (assuming 4 = 0), and

l ! l"‘ oy 5 Ja
H, = “‘l:‘“( 2‘2' T2’2T22+Tizf'll]+0<—'> (138)

determines the contribution of the spatial covariance terms and the higher order terms to
the value of the rate hardening modulus # provided the neglected terms are of the order
of magnitude J,/G and smaller (it means that we neglect terms of the order \/.I:/G in
computrison to 1).

Taking into account the orientation of the plane within which the shear band local-
ization first occurs we obtain the final result in the following form:

s , ’— —_ y R |
ot JombCo) 2 Dy, |
2 6 /I
+(1—v)r—rmm}—‘@+o(1§). (139)

G G
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The value in brackets { } represents again the main contribution to the value of H x'n::p!icd
by the spatial covariance terms. It is reasonable to comment how this main contribution to
the value of H has been obtained.

In order to estimate the change in orientation of the plane of localization (and its
influence on the critical hardening rate) when spatial covariance effects are taken into
consideration. a linear expansion of the function ¢H/J about B, is used. where §, denotes
the angle between the vector n and the 1y, direction when the thermal effects as well as the
spatial covariance effects are neglected. Denoting by a prime the derivative with respect to
B. we get

H'(B) = H'(By) + (B—Bo)H" (Bv)
= Hy(Bo)+ H' (Bo) +(B—Bo)[Ha(Bo) + H(Bo)]- (140)

Taking advantage of the conditions

H B =0 and Hy(fs) =0 (141)
we obtain
H'\(B,)
—bo= — TG 142
. Ha(Bo) + H(Bo) (142)

The critical hardening rate can be approximated by the lincar expansion of the function H
about fi,, and making usc of egn (142) and the condition #;(ff,) = 0, we have

H(B) = Ho(Bo)+ H (Bo) + (B = B HH(Bo) + H (Bo)]

HE ()
= Ho(Bo)+ H(B) - ;;gz;z,‘ii(i}f(/ii;i

= Ho(ﬁn)‘l"fl:(ﬁo)’*o(g), (143)

as has been utilized in (139).

6. DISCUSSION OF THE RESULTS

6.1. Influence of thermomechanical couplings

The result (124) for the critical hardening modulus rate H,,/G as a function of the state
of stress T may be represented by a family of parabolas, as has been plotted in Fig. 1.

The expression (124) for [T = = = 0 gives the expected result for associated Jx-flow
theory, ie. (H,/G)m., is zero and localization occurs on the plane whose direction is
determined by angle

v+ T
f# = arctan (-— -V—i;;—,l;;;:).

cf. Rudnicki and Rice (1975). For this case (i.c. when [T == = 0) H,, is non-positive, cf.
the parabola plotted in Fig. | by a broken line.

However, if thermomechanical coupling effects are taken into consideration, the value
of the hardening modulus rate for localization can, in general, be positive, cf. the parabola
plotted in Fig. | by a solid line.
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We consider two important thermal effects, namely thermal expansion, represented by
= and thermal plastic softening, represented by I Thermal expansion implies that the
inclination to instability for axially symmetric compression is diflerent from that for axially
symmetric tension. For tension the material is more sensitive to localization than for
compression (cf. Fig. 1). Thermal plastic softening causes the material to be more inclined
to instability, independently of the state of stress.

For elastic incompressibility, i.e. for v = 1, the result (124) takes the form

Iln:r Y eped -
S = AT (144)

(cf. the parabola plotted in Fig. | by dotted line), thenfor T =0

H.
iy = . 145
( ‘. ) n (145)

and the maximum value of the critical hardening modulus rate for an adiabalic process can
again be positive. i.c. IT > 0. Indeed. since temperature is increasing due to internal dis-
sipation rate, the yield stress no(1 —wJ)'® as well as the saturation hardening stress
K (I —w3) ' °, are decreasing, similarly /1, = A,(3) is a decreasing function of temperature,
e, di/dd < 0, then from egns (42) and (114a) we have IT > 0.
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It is important to stress that the increase of temperature for an adiabatic process for
homogeneous deformation (i.e. before the localization phenomenon occurs) is not large,
but it suffices to superpose some small plastic softening effect of the material. This thermal
plastic softening effect is crucial for a proper explanation of the mechanism of localization.

Of course. we can also introduce additional micro-damage mechanisms to describe
realistic behaviour of metals (cf. Duszek and Perzyna. 1988a.b; Duszek-Perzyna et al.,
1990). but it seems that thermomechanical couplings and thermal softening effects have a
dominating influence on the phenomenon of localization.

The results obtained are in agreement with experimental observations of the initiation
of localization.

Anand and Spitzig (1980) performed experimental investigations of the initiation of
localized shear bands in a maraging steel under the condition of quasi-static plane strain.
They observed a small but essential difference between the values of the hardening modulus
at localization for tension and compression.

From eqn (123) it follows that there is no influence of thermal plastic softening
(represented by IT) on the direction of localization; however, the influence of thermal
expansion (represented by Z) is rather distinct. For example, in the case of a pure shear
stress state, we have 7, = 0, 1 = — 15y, then eqn (123) becomes

an? T;+(| —2")3\/,: — Tm‘.«\+(| “2\')-:'-: '46
tan ﬂ = —:———»-——~—:«~~7~7j - ?; ,_..,.,:_{‘_:_5"):; . ( )
T — ({ s 2").:.\/.]: max ZVis

When material is clastically incompressible (v = 1) or thermal expansion is neglected
(E = 0). eqn (146) yiclds B = 45, whereas taking into account the thermal expansion effect
gives § > 457, which is in accordance with experimental obscrvations. For states of stress
other than pure shear the influence of the thermal expansion effect is such that deviation
at the plane of localization from 45" is even more prominent.

6.2. Influence of stress flux

The matrix X arises in (134) due to the difference between L,t and ¢ and describes
the influence of the spatial covariance terms on the condition for localization. This influence
is effectively decribed in eqn (136) by #, orineqn (139) by { }.

The matrix ¥ consists of different terms which have the magnitude of a stress com-
ponent divided by an elastic modulus G. These terms are generally small compared to unity.
This justifics the approximation procedure assumed in the determination of H.,/G [cf. eqn
(139)].

However, it is reasonable to point out that the rate of hardening modulus H decreases
in value with ongoing plastic deformation and all terms in H, become small and can be
comparable to terms in H,. This supports the conjecture that the influence of terms which
arise from the difference between the Lic derivative and the material rate of the Kirchhoff
stress tensor are important and may play a dominant role when the inception of localization
phenomenon is expected to take place for small values of H, which is near to the maximum
stress attained during the process.

In fact, the experimental results obtained for AISI 1018 cold rolled steel by Marchand
et al. (1988), and performed by using a torsional Kolsky bar (split-Hopkinson bar) to
impose a rapid deformation rate in a short thin-walled tubular specimen, showed that the
inception of localization along the shear band takes place in the stage of the plastic
deformation process when the range of nominal strains is about 15-45% and corresponds
approximately to the maximum stress attained during the test. These results confirmed that
with continued deformation the strain distribution is no longer homogeneous. During this
stage of the process a continuous increase in the magnitude of localized strain along a
narrow shear band is observed. As the nominal strain within this stage increases, the
localized strain increases over 1 50%. In this stage of deformation the values of the hardening
modulus rate and flow stress level do not vary greatly.
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7. CONCLUSIONS

The analysis of the influence of thermomechanical couplings on adiabatic shear band
localization criteria for finite elastic-plastic deformations based on the standard bifurcation
theory has been presented.

Particular attention is focused on the objectivity of the rates and to the form of the
constitutive and evolution equations proposed. A method has been developed which allows
application of the standard bifurcation procedure in examination of the shear band local-
ization criteria when plastic flow phenomena and thermomechanical coupling effects are
taken into consideration.

The investigation of two important thermal effects, namely thermal expansion and
thermal plastic softening, is described. It has been proved that thermal expansion implies
that the inclination to instability for the axially symmetric compression is different from
that for the axially symmetric tension. For tension the material is more sensitive to local-
ization than for compression. This result is in agreement with experimental observations of
the initiation of localized shear bands in maraging steel under the condition of quasi-static
plane strain of Anand and Spitzig (1980). Thermal plastic softening makes the material
more inclined to instability, independently of the state of stress. It has been shown that
even a small increase of temperature for an adiabatic process implies the plastic softening
effect which becomes crucial for the initiation of the mechanism of focalization. This result
coincides with the conclusion drawn from the experimental observations performed under
dynamic loading conditions for steels reported by Hartley ¢f of. (1987), Marchand and
Dufly (1988) and Marchand et al. {(1988).

Discussion of the influcnce of the covariance terms which arise from the difference
between the Lee derivative and the material rate of the Kirchhoft stress tensor on the
localization criteria is also presented. It has been shown that the influenee of the covartance
terms is important and may play a dominant role when the inception of localization
phenomenon is expected to take place for small values of the rate of hardening modulus
£, that is ncar to the maximum stress attained during the process. This result supports
physically and experimentally justified conjecture.
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